Miljöbedömning av en påbyggnation med trästomme

Joakim Norén, Carmen Cristescu

RISE Rapport : 2022:60
ISBN: 978-91-89711-00-6
Miljöbedömning av en påbyggnation med trästomme
Joakim Norén, Carmen Cristescu

Omslagsbild: Glitne påbyggnaden i Umeå
Fotograf: Jonas Westling och Malin Grönborg för Martinsons

© RISE Research Institutes of Sweden
Abstract

Environmental benefits when building with timber structures as vertical extension

The aim of the study is to increase the understanding and knowledge of the climate impact of a timber construction built as a vertical extension of an existing building compared with corresponding timber building built on the ground. The purpose is to make a life cycle analyse of the construction phase and to investigate possibilities to improve the climate impact of future vertical extensions with interventions in the planning phase when decisions on material selection and constructive design are usually taken.

The system boundaries have been the same when comparing the vertical extension with the building on the ground, as a prerequisite for a robust comparison.

The results of the environmental calculation for the timber vertical extension show that what mainly contributed to the climate impact in the studied case was the steel reinforcement that distributes the load on the existing building.

The results of the environmental calculation of the building on the ground show that the basic structure, ie an insulated slab on ground with stiffening under dividing walls in this case entails most of the total climate impact during the construction phase.

An important conclusion of the study is that the choice of reinforcement measure is of great importance in an extension. Careful review of the existing building's condition and load-bearing capacity is required. Material, material quantity and structural design need to be evaluated so that the climate impact can be minimized while maintaining function.

Key words: timber building, vertical extension, LCA, climate impact, biogenic carbon
Förord

Rapporten avser arbetspaket 7 "Livscykelanalyser och cirkularitet" i projektet “Timber on Top”, del 2, finansierad av Vinnova, diarienummer 2019-0353, och koordinerat av Svenskt Trä.

Projektets mål är förtätning och förlängd livslängd för flexibelt nyttjande av befintliga byggnader med hjälp av på/vidbyggnader med återanvändbara biobaserade prefabricerade byggsystem.

Resultaten analyseras och rekommendationer för LCA för påbyggnationer tas fram för att bidra till Best Practice Guide.

Författarna tackar Annika Ljungblad, Balticgruppen, Daniel Wilded, Martinsons för underlag till beräkningar. Författarna tackar också Tomas Alsmarker, Svenskt Trä för givande diskussioner och Tora Råberg, RISE, för idéutbyte.

Tack till Marie Johansson, projektets ledare för RISE, för värdefulla kommentarer i granskningen.

Joakim Norén och Carmen Cristescu
Stockholm och Skellefteå, juni 2022
Sammanfattning

Målet med studien är att öka förståelsen och kunskaperna om vilken inverkan en påbyggnad med träbyggsystem har på klimatet jämfört med om motsvarande byggnad uppförs på mark. Syftet är att studera byggnadernas klimatpåverkan under byggskedet och undersöka möjligheter för klimatförbättrande åtgärder i detaljprojekteringarna då bland annat materialval och konstruktiv utformning slutligen beslutas.


Vid jämförelsen av påbyggnaden och byggnaden uppförd på mark har systemgränserna varit lika vilket är en förutsättning för en robust jämförelse.

Resultaten av miljöberäkningen för påbyggnaden med träbyggsystem visar att det som främst bidrar till klimatpåverkan för påbyggnaden är balkrosten av stål som fördelar lasten på befintlig byggnad. Dessa byggnadsmaterial har dock en bra potential för återbruk som kan ha en positiv inverkan på klimatet.

Resultaten av miljöberäkningen om byggnaden uppförs på mark visar att grundkonstruktionen, dvs en isolerad platta på mark med förstyvning under lägenhetsskiljande väggar i detta fall medför mest av den totala klimatpåverkan under byggskedet.

En viktig slutsats av studien är att valet av förstärkningsåtgärd kan ha stor betydelse vid en påbyggnad. En noggrann genomgång av befintlig byggnads tillstånd och bärförmåga måste genomföras. Material, materialmängder, konstruktivt utförande och möjligheterna till framtida återbruk behöver utvärderas så att klimatpåverkan kan minimeras med bibehållna funktion.
1 Inledning

1.1 Mål och syfte

Målet med studien är att öka förståelsen och kunskaperna om vilken inverkan en påbyggnad med träbyggsystem har på klimatet jämfört med om motsvarande byggnad uppförs på mark. Syftet är att studera byggnadernas klimatpåverkan under byggskedet och undersöka möjligheter för klimatförbättrande åtgärder i detaljprojekteringen då bland annat materialval och konstruktiv utformning slutligen beslutas.

2 Beskrivning av analyserade byggnadsobjekt

Byggnaden som valts för LCA-analysen utgör en del av påbyggnaden av en galleria i projektet Glitne i centrala Umeå. Den valda byggnaden är en radhuslänga med åtta lägenheter i två plan, se markerad del i figur 2.1, och ingår i både analysen av en påbyggnad och en byggnad på mark.

Byggnaden är byggd med en stomme av KL-trä i väggar, bottenbjälklag och våningsbjälklag. Takbjälklaget utgörs av isolerade takelement med lättbalkar.

2.1 Påbyggnad

Vid påbyggnaden av gallerian har befintlig byggnad varierande förutsättningar att ta upp last från påbyggnaden. En galleria innebär också att man har relativt stora öppna ytor i bottenplan vilket kan ge stora avstånd mellan bärande system och en relativt komplex fördelning av laster från ovanliggande strukturer. Utförandet av påbyggnaden är både unikt och relativt komplext. Detta har krävt förstärkningsåtgärder och valet blev en stomme av stålbalkar som fördelar lasten ned i underliggande bärande väggkonstruktioner, se figur 2.2. För analysen av påbyggnaden ingår enbart balkarna som markerats i figuren.

Figur 2.2 Påbyggnadens stålstruktur som fördelar läsor till befintlig byggnad. Den markerade delen av stålstrukturen bär upp den analyserade delen av byggnaden och ingår därmed i LCA. Skiss. © Balticgruppen.
2.2 Byggnad på mark

Byggnaden på mark är uppförd på en traditionell grund som består av en isolerad betongplatta på mark med förstärkning under bärande väggar. Vid placering på platta på mark anses det bottenbjälklag som används vid påbyggnaden inte behövas och är således inte inräknat i analysen. I analysen ingår också en del i den väg som antas finnas framför fastigheten med anslutning av vatten och avlopp.

3 Klimatberäkningar

3.1 Omfattning och avgränsningar

Vid jämförelsen av påbyggnaden och byggnaden uppförd på mark har systemgränserna varit lika vilket är en förutsättning för en robust jämförelse, se figur 3.1. Inventeringen och analysen av byggnaden omfattar byggnadens byggskede A1-A5.

Användningsfasen B som antas vara lika för påbyggnaden och byggnaden på mark har inte analyserats. Byggnadens slutfas C antas ligga långt fram i tiden och kan endast analyseras med scenarier för sluthanteringen. Skillnaden i klimatpåverkan mellan de två fallen antas vara i stort sett lika avseende demontering/rivning och transporter varför denna del inte analyserats.

Redovisningen av miljöeffekterna i livscykleln följer uppdelningen i moduler enligt SS-EN 15978 [1] och SS-EN 15804 [2].

Figur 3.1 Flödet av etapper i byggskelet. Moduler som ingår i LCA beräkningen. Process och material markerade i rutan ingår i "träbyggnaden".
Följande byggnadsdelar ingår i inventeringen av båda versionerna av radhusen:

- Ytterväggar inklusive fasadmaterial och ytskikt
- Innerväggar, bärande och avskiljande
- Mellanbjälklag och takbjälklag
- Balkonger vid våningsbjälklag
- Limträd balkar

För påbyggnaden ingår också följande delar:

- Bottenbjälklag
- Förstärkningar av befintlig byggnad vid påbyggnad av radhus, utförd som en balkrost i stål

För byggnaden på mark ingår också följande delar:

- Grund med platta för radhus byggt på mark inklusive dräneringsrör runt platta samt anslutning till gemensam dagvattenledning i gata
- Del av anslutningsväg och installationer framför radhus på mark
- Schaktarbete, utfyllnad med makadam, bortforsling av schakttmassor

Följande ingår inte i inventeringen:

- Glaspartier, fönster och dörrar
- Altan (tak hos befintlig byggnad)
- Invändiga ytskikt som färg, tapet och parkett
- Utvändigt grönt tak med växter
- Invändiga snickerier
- Installationer med undantag av en kortare anslutning mellan fastighet och gata vid byggnad på mark
- Slutligt markarbete t.ex. plattsättning med mera runt byggnad
Tabell 1 Konstruktioner och material som ingår i LCA beräkningen

<table>
<thead>
<tr>
<th>Trästomme vid påbyggnad</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Yttervägg</strong></td>
<td>Plåtfasad, Aluminium&lt;br&gt;T-profil&lt;br&gt;30 mm stålregel&lt;br&gt;200 mm stenull&lt;br&gt;120 mm KL-träskiva&lt;br&gt;2x12,5 mm gipsskiva typ N</td>
</tr>
<tr>
<td><strong>Innervägg</strong></td>
<td>15,4 mm gipsskiva, typ F&lt;br&gt;12,5 mm gipsskiva, typ N&lt;br&gt;120 mm KL-träskiva&lt;br&gt;12,5 mm gipsskiva, typ N&lt;br&gt;15,4 mm gipsskiva, typ F</td>
</tr>
<tr>
<td><strong>Takbjälklag</strong></td>
<td>Tätskikt YEP4000&lt;br&gt;14,5 Plywood&lt;br&gt;H350 Lättbalk&lt;br&gt;47 mm Mineralull, Stenull&lt;br&gt;256 mm Mineralull, Stenull&lt;br&gt;47 mm Mineralull, Stenull&lt;br&gt;9,5 mm Plåt (stål)&lt;br&gt;15,4 mm Gipsskiva Typ F&lt;br&gt;45 mm Primärprofil P45&lt;br&gt;85 mm Sekundärprofil S25/85&lt;br&gt;12,5 Gipsskiva typ Härd</td>
</tr>
</tbody>
</table>
Mellanbjälklag

- 15 mm Lamellparkett
- 22 mm spånskiva med golvvärme
- 15,4 mm gipsskiva, GF
- 150 mm KL-träskiva
- Primärprofil Gyproc P45
- Sekundärprofil S25/85
- Gipsskiva Hård Typ Habito

Balkong

- 22 mm impregnerad trätrall
- 45x95 mm impregnerad regel
- Tätskikt
- 80 mm foamglas, T4
- 115 x 360 mm limträbalk
- 150 mm KL-trä

Endast för påbyggnad

Bottenbjälklag

- 15 mm Lamellparkett
- 22 mm spånskiva (spårad golvvärme)
- 150 mm KL-träskiva
- 12,5 mm elastomer under KL-trä
- 45 mm träsyll
- Stål balk

Endast för byggnad på mark

Platta vid byggnad på mark

- 100 mm Kantelement, L-element
- 100 mm armerad betongplatta
- 300 mm cellplast under platta
- Armeringsnät, 8 mm, c 250 mm
- Armering kanthalk, 12 mm
- 250 mm dräneringsgrus 16/32
- 500 mm makadam, återfyllnad
- 100 mm dräneringsrör
- 110 mm anslutningsrör dagvatten
- Separationsduk 135 g/m²
3.1.1 Funktionell enhet
Den funktionella enheten (FU) har i studien valts till 1 m² bruttoarea (BTA) under 50 år i ett flerbostadshus bestående av en radhuslänga i tvåplan där ingående byggnadsdelar uppfyller samma funktion med avseende på brand, ljud och energieffektivitet.

3.1.2 Geografisk täckning
Beräkningarna av påbyggnaden och motsvarande byggnad på mark är baserade på projektet Glitne i centrala Umeå. Byggnaden på mark har antagits vara uppförd i utkanten av Umeå ca en km från centrum. Material är desamma som ingår i påbyggnaden av Glitne och antas komma från samma leverantörer. Där uppgifter om materialtillverkare saknas har de mest troliga leverantörerna använts. Specifika transportavstånd har använts i de flesta fall.

3.1.3 Miljöpåverkanskategorier
Påverkanskategorierna som har valts till denna livscykelanalys är klimatpåverkan enligt IPCC GWP100 med enheten kg CO2-ekv/FU och biogent kol.

3.1.4 Datakvalitet
Värden som valts för miljöpåverkan är oftast specifika för valda konstruktionsdelar och representativa för den svenska marknaden. I första hand har specifika data från EPDer och miljödeklarationer använts. I andra hand har EPDer för motsvarande eller liknande produkter använts. EPDerorna är tredjepartsgranskade, följer SS-EN 15804 och är representativa för den svenska marknaden. Där EPDer saknas har data från Ecoinvent använts. För el används data från svensk el justerad med handel av el med utlandet. Se bilaga 1 för en komplett lista över använda material.

3.2 Inventering
Inventeringen av påbyggnaden har baserats på ritningsunderlag som tillhandahållits av Balticgruppen AB. Ritningarna utgörs av arkitekt- och konstruktionsritningar vilka använts för att beräkna areor av väggar och bjälkflag samt mängden material i den del av byggnaden som ingår i LCA-analysen. Mängden stålbalkar i förstärkningen av befintlig byggnad under radhuset har också beräknats från konstruktionsritningarna.
Detaljutförandet för ingående konstruktionslösningar avseende material, beslag och infästningar har hämtats från materialtillverkare för de olika byggsystemen.
3.2.1 Produktion (modul A1 och A3)

För beräkningen av betongens miljöpåverkan i grundplattan på mark används EPDer som är specifika för den svenska marknaden.

3.2.2 Transporter (modul A2 och A4)

Transportaktiviteterna i modulerna A2 och A4 beräknas med hjälp av data från Nätverket för transporter, NTM [3]. Eftersom ingen information om vägtransporterna finns tillgänglig används standardvärden för vägtransporter i Europa.

3.2.3 Maskiner på byggarbetsplats (modul A5)

För modellering av monteringar har användningen av byggmaskiner baserat på data om klimatpåverkan av kran från Erlandsson och Peterson (2015).

4 Miljöpåverkansbedömning

4.1 Påbyggnad

Resultaten av miljöberäkningen för påbyggnaden med träbyggsystem presenteras i figur 4.1 som visar den procentuella fördelningen för klimatpåverkan från samtliga konstruktionsdelar. Det som främst bidrar till klimatpåverkan för påbyggnaden är förstärkningen, dvs balkrosten av stål, som fördelar lasten på befintlig byggnad (27 %). Delar i träkonstruktionen som har ett stort bidrag är yttervägg (20%) och takbjälklag (19%). Arbetet på byggarbetsplats ger i detta fall endast ett litet bidrag.
Figur 4.1 Relativa bidraget från olika konstruktionsdelar till klimatpåverkan GWP-GHG för byggskedet (A1-A5) för analyserad påbyggnad.

4.2 Byggnad på mark

Resultaten av miljöberäkningen om byggnaden uppförs på mark presenteras i figur 4.2. Resultaten visar att grundkonstruktionen, dvs en isolerad platta på mark med förstyrning under lägenhetsskiljande väggar i detta fall medför 29% av den totala klimatpåverkan under byggskedet. Anslutningsvägens klimatpåverkan är beräknat med hjälp av verktyget Klimatkalkyl från Trafikverket. Den bidrar med 8% av den totala klimatpåverkan av konstruktionsdelarna i byggskedet.
4.3 Jämförelse av påbyggnad och byggnad uppförd på mark

Studien är baserad på hypotesen att den byggnad (som byggs ovanpå balkrosten) som placeras ovanpå befintlig byggnad och byggnaden som byggs på platta på mark i stort sett har samma utförande. Det som skiljer båda träbyggnaderna åt är att bottenbjälklaget i trä ersätts av betongplattan då byggnaden byggs på mark. För byggnaden på mark ingår även en anslutningsväg framför fastigheten med anslutning av vatten och avlopp. I beräkningen ingår också schaktning och utfyllnad med dräneringsmaterial under grunden som sträcker sig ca 1 m utanför betongplattan. Övrigt markarbete såsom stensättning etc ingår däremot inte i analysen.

Figur 4.3 Klimatpåverkan per Bruttoarea (BTA) för en påbyggnad jämfört med om motsvarande byggnad som byggs på mark. I påbyggnad ingår förstärkningsåtgärder av befintlig byggnad och vid byggnad på mark ingår platta på mark, grundarbete och anslutningsväg utanför fastigheten.

Träbyggnaden vid påbyggnad har en något högre klimatpåverkan jämfört med träbyggnaden på platta på mark på grund av bottenbjälklagen som ingår i påbyggnaden. Bottenbjäckagens klimatpåverkan är 6,6 kg CO₂ e/m² BTA (eller 657 kg CO₂ e/lägenhet). Bottenbjälklagen innehåller dock trämaterial med stor potential för kolinlagring som medför en positiv effekt på klimatet förutsatt att biogen kol bundet i dem lagras under en lång tid.

4.4 Inverkan av framtida återbruk av bärande element i påbyggnaden

4.4.1 Biogen kol

Enligt Andersen et al., 2021, som har studerat miljöpåverkan av en KL-träbyggnad, resulterar användningen av biogen kol i netto-negativa koldioxidutsläpp under byggnadens livslängd eftersom biogen kol lagras i byggnaden och ytterligare kol tas upp under ny skogstillväxt. En förutsättning är att lagringen sker under tillräckligt lång tid.

Biogen kol inkluderat i LCA ger beslutsfattare ny värdefull information som kan vara viktig med hänsyn till beslut på olika lösningsalternativ (Andersen et al., 2021) och det finns olik syn på en sådan inkludering i olika europeiska länder. Enligt sammanställningen i den omfattande studien av Malmqvist et al., 2021, utnyttjas i
Danmark den tyska databasen Ökobau för klimatberäkningar för byggnader, med verktyget LCAByg som inkluderar, till skillnad från värdena i den svenska (och finska) klimatdatabasen, även upptag av biogen kol i form av CO2 i modul A1-A3.

Intressen för potentialen av kolinlagring i träbyggnader är undersökt i Holland också, där Van Stijn (2021) visar att de viktigaste maximeringsstrategierna för att öka användningstiden för träkomponenter fram till 2050 och 2100 är att utveckla nya demonteringstekniker för befintliga bostäder, utveckla kvalitetsstandarder för att återbruka träkomponenter, förbjuda infrastrukturen för återanvändning av element och material, och skapa en marknadsplats med överblick över utbud och efterfrågan på sekundära material.

En ökad användning av scenarioanalys för modellering av framtida användning (möjligtvis också kaskadanvändning) efter den första livscykel blir mer och mer efterfrågat (Garcia et.al, 2020, Andersen et al., 2021).

Ett exempel på ett scenario för möjlig återanvändnings- och återvinningspotential för trämaterial / komponentnivå för den analyserade påbyggnaden redovisas i Tabell 2.

Tabell 2. Analys av trämaterialanvändning, möjligt framtidsscenario och beräknat biogen kol för en byggnad när komponenterna används minst 100 år, per påbyggnad med 8 lägenheter.

<table>
<thead>
<tr>
<th>Material/ Komponent</th>
<th>Placering i byggnad</th>
<th>Total mängd trämaterial/träkomponent [kg/byggnad]</th>
<th>Total mängd trämaterial/träkomponent [kg/m²BTA]</th>
<th>Möjlig återanvändningsgrad (%)*</th>
<th>Möjlig återvinningsgrad (%)**</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL-trä</td>
<td>Väggar, bjälklag</td>
<td>109 844</td>
<td>138</td>
<td>100</td>
<td>100</td>
<td>Skyddad i konstruktionen</td>
</tr>
<tr>
<td>Limträ</td>
<td>Balkong, avväxling/förstärkning</td>
<td>2 518</td>
<td>3,2</td>
<td>100</td>
<td>100</td>
<td>Skyddad mot vatten</td>
</tr>
<tr>
<td>Plywood</td>
<td>Takbjälklag, takelement</td>
<td>3 096</td>
<td>3,9</td>
<td>50</td>
<td>50</td>
<td>Exponerad för stora temperaturer och varierande luftfuktighet</td>
</tr>
<tr>
<td>Spånskiva (spårad golvvärme)</td>
<td>Bjälklag</td>
<td>13 028</td>
<td>16,4</td>
<td>50</td>
<td>100</td>
<td>Små ändringar av temperatur</td>
</tr>
<tr>
<td>Konstruktions-virke</td>
<td>Balkong/Trall</td>
<td>268</td>
<td>0,3</td>
<td>0</td>
<td>100</td>
<td>Impregnerad, exponerad</td>
</tr>
<tr>
<td>Lättbalk H350</td>
<td>Takelement</td>
<td>2 687</td>
<td>3,4</td>
<td>50</td>
<td>50</td>
<td>Större ändringar av fukt och temp. Limmets kvalitet spelar roll</td>
</tr>
<tr>
<td><strong>Total mängd trämaterial</strong></td>
<td>131 444</td>
<td>165,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Återvinnning, också kallad materialåtervinnning betyder sönderdelning till spån eller flis för t.ex. spånskivor och andra formpressade produkter

**Återanvändning – användning av en komponent (hel eller delad) som inte innebär sönderdelning

Antaganden för beräkningen är ett scenario som enbart avser detta fallstudie i syfte att visa kolinlagringens betydelse och potential.
Träbaserade material innehåller också vatten, lim och andra kemiska produkter. Biogent kol står för hälften av det torra träet.

Byggnaden i studien är ett 2-våning radhus. Mängden träbaserade material som ingår i LCA beräkningen av påbyggnaden är 165,2 kg/m² BTA och mängden träbaserade material som ingår i LCA beräkningen av byggnaden på mark är 129 kg/m² BTA, skillnaden består av bottenbjälklagen på påbyggnaden. Den innehåller cirka 8 m³ KL-trä per lägenhet som motsvarar 5 700 kg bundet biogent kol CO₂/lägenhet (eller cirka 1500 kg bundet biogent C/lägenhet). Detta gör att påbyggnaden har en större potential än byggnaden på mark att utgöra en kolsänka med den inbundna koldioxiden i bottenbjälklaget.

Erlandsson et al. (2018) redovisar 224 kg/m² Atemp för en byggnad med KL-trästomme medan Andersen (et al.) redovisar 188,5 kg/m² BTA för trä materialet i byggnaden. Skillnaden kan bero på att byggnaderna i jämförelse är högre, 6-vånings- respektive 8-våningshus. Trähus kräver generellt större mängder material ju högre de blir för att uppfylla tekniska krav såsom stabilitet, hållfasthet, brand, vibrationer (Landell, 2018). Erlandsson noterar "att resultat i klimatpåverkan per m² Atemp är inte jämförbara med resultat per m² BTA eftersom (bl.a) projekterade lösningarna har således varierande bruttoarea, då tjockleken på yttervägg skiljer sig".

Tabell 3 redovisar bundet biogent kol för de olika trämaterial / komponenter per lägenhet men också per m² BTA för analyserade påbyggnaden.

<table>
<thead>
<tr>
<th>Material/komponent</th>
<th>Mängd material per lägenhet [m³]</th>
<th>Densitet material [kg/m³]</th>
<th>Andel lim och andra kemiska ämnen i material [%]</th>
<th>Biogent kol [kg C] per m² BTA</th>
<th>Biogent kol [kg CO₂] per m² BTA</th>
<th>Informationskälla (år 2021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL-trä</td>
<td>31,9</td>
<td>430</td>
<td>0,8</td>
<td>6 254</td>
<td>62,9</td>
<td>NEPD 345-236</td>
</tr>
<tr>
<td>Limträ</td>
<td>0,7</td>
<td>468</td>
<td>0,9</td>
<td>139</td>
<td>1,4</td>
<td>NEPD-2783-1438</td>
</tr>
<tr>
<td>Plywood</td>
<td>0,8</td>
<td>490</td>
<td>9</td>
<td>166</td>
<td>1,7</td>
<td>6,1</td>
</tr>
<tr>
<td>Spånskiva (spårad golvvärme)</td>
<td>2,4</td>
<td>680</td>
<td>13</td>
<td>536</td>
<td>5,4</td>
<td>NEPD-1579-604</td>
</tr>
<tr>
<td>Konstruktionsvirke</td>
<td>0,07</td>
<td>460</td>
<td>0</td>
<td>15,5</td>
<td>0,2</td>
<td>S-P-02657</td>
</tr>
<tr>
<td>H350 Lättbalk (OSB liv)</td>
<td>0,6</td>
<td>540</td>
<td>4,4</td>
<td>160</td>
<td>1,6</td>
<td>NEPD-3202-1842+3031EPD-17-0634</td>
</tr>
<tr>
<td>Totalt</td>
<td>36,4</td>
<td>7 282</td>
<td>73</td>
<td>268</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*BTA = 99,5 m² per tvåvåningslägenhet i påbyggnaden med KL-trästomme

Adolfsson et.al. (2021) redoviserar biogent kol i form av koldioxid/ m² BTA för fyra typer av träbyggnader som dock har Regelstomme (detta innebär en mindre mängd trä i
byggnaden än KL-trästommen). Till skillnad från vårt fall inkluderar Adolfsson i beräkningen även trä/aluminiumfönster. Biogent kol ligger i det fallet mellan 125 och 136 kg CO2/m² BTA (Adolfsson et al., 2021) som är ungefär hälften av värden i vårt resultat, detta pga en mindre mängd trä som använts i regelstommen jämfört med KL-trästommen.

För att öka återbruken, framförallt återanvändning av träkomponenter på längre sikt är det viktigt att ta hänsyn till designstrategier som möjliggör enkel demontering och återmontering, att sätta krav på demonterbarhet redan i planeringsskedet (Cristescu et al., 2020). Material som återanvänds kan behöva klassas, och dess funktion säkerställas ifall sådana krav föreligger. En återvunnen produkt kommer inte nödvändigtvis ha samma klassning som när produkten var nyförrad. Det förutsätter att det inte finns fuktskador på komponenter som kan försämra funktionen.

Stål i stålbalkar, stålprofiler och stålplåt som finns mest i förstärkning för påbyggnad, kan återanvandas och/eller återvinnas till 100% (Hradil et al., 2017).

## 5 Diskussion och slutsatser


Material, materialmängd och utförande bör i ett tidigt skede i projekteringen utvärderas så att klimatpåverkan kan minimeras med bibehållen funktion. Genomförande av en LCA-analys i ett tidigt skede av projekteringen är därför viktigt för att upptäcka var och när den största klimatpåverkan uppträder i byggnadens livscykel. En noggrann genomgång av befintlig byggnads tillstånd och bärformåga krävs också för att möjliggöra ett optimalt val av byggsystem och hur det kan anpassas för att minska behovet av förstärkningsåtgärder. Utformningen av byggnadens ”midja” där påbyggnad och befintlig byggnad kopplas ihop blir därför särskilt viktig vid påbyggnationer.

Resultaten, från denna specifika byggnad, visar att mängden stål i balkrosten vid påbyggnaden i stort sett medför samma påverkan på klimatet som grundläggningen med plattan på mark detta trots att balkarna till större del innehåller återvunnet stål. Om en träkonstruktion kan användas i stället för stål kunde klimatpåverkan minskas avsevärt.

Övriga förbättringar som kan bidra till en minskad klimatpåverkan är:

- Valet av träbyggnadssystem medför olika förstärkningsåtgärder och anpassning av dessa.
• Utnyttjande av skivverkan i KL-Trä kan minska behovet av förstärkningsåtgärder.
• En påbyggnad påverkas av väder och vind i större utsättning än byggnad på mark och kräver en noggrann utformning av fasad och anslutningsdetaljering som minskar underhållet och förlänger livslängden.
• En påbyggnad av massivt trä i kombination med förstärkningar av stål balkar av återvunnet stål har en stor potential för att återbrukas i framtiden vilket medför en positiv påverkan för klimatet. Återanvändningen och återvinningen av träprodukter kan bidra till en permanent kollagring (över 100 år).
Referenser


### Bilaga 1

<table>
<thead>
<tr>
<th>Material</th>
<th>Deklarerad enhet</th>
<th>Klimatpåverkan [kg CO2-ekv/enhet]</th>
<th>Datatext</th>
<th>Referens</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Platta på mark</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armering</td>
<td>t</td>
<td>370</td>
<td></td>
<td>Steel reinforcement products for concrete - Swedish production, Celsa Steel Service AB, EPD International, S-P-00305, 2021.</td>
</tr>
<tr>
<td>EPS isolering 200</td>
<td>1 m²</td>
<td>8,1</td>
<td></td>
<td>Polystyrene, EPD Danmark: MD16005-EN, Plastindustrien, 2017.</td>
</tr>
<tr>
<td>EPS isolering 300</td>
<td>1 m²</td>
<td>12,2</td>
<td></td>
<td>Polystyrene, EPD Danmark: MD16005-EN, Plastindustrien, 2017.</td>
</tr>
<tr>
<td>Dräneringsrör HDPE</td>
<td>1 kg</td>
<td>1,8</td>
<td></td>
<td>Data från Plastic Europé, 2014.</td>
</tr>
<tr>
<td>Markrörl PP</td>
<td>1 m PVC Sewage pipe 110x3,2 SN8</td>
<td>2,38</td>
<td></td>
<td>Sewage pipe, NEPD-2880-1574-EN, Pipelife Sverige, 2021.</td>
</tr>
<tr>
<td>Dräneringsbrunn</td>
<td>kg</td>
<td>1,8</td>
<td></td>
<td>Data från Plastic Europé, 2014.</td>
</tr>
<tr>
<td>Markduk separationsduk</td>
<td>kg</td>
<td>2</td>
<td></td>
<td>Data från Plastic Europé, 2014.</td>
</tr>
<tr>
<td><strong>Förstärkningar av befintlig byggnad vid påbyggnation</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stålbalk HEB400</td>
<td>t</td>
<td>1020</td>
<td></td>
<td>Steel beams, S-P-02626, Stena, 2021.</td>
</tr>
<tr>
<td>Stålbalk HEB240</td>
<td>t</td>
<td>1020</td>
<td></td>
<td>Steel beams, S-P-02626, Stena, 2021.</td>
</tr>
<tr>
<td>Syll, trä</td>
<td>m³</td>
<td>29,6</td>
<td></td>
<td>EPD S-P-02657 Svenskt Trä</td>
</tr>
<tr>
<td>Syllpapp</td>
<td>m²</td>
<td>1,71</td>
<td></td>
<td>Reinforced bitumen sheets for roof waterproofing (underlayers), Nordic waterproofing, International EPD S-P-01900, 2020.</td>
</tr>
<tr>
<td><strong>Innerväggar</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva GF</td>
<td>m²</td>
<td>3,54</td>
<td></td>
<td>EPD Gyproc Typ GF</td>
</tr>
<tr>
<td>Gipsiva GN</td>
<td>m²</td>
<td>2,14</td>
<td></td>
<td>EPD Gyproc Typ GN</td>
</tr>
<tr>
<td>KL_Trä</td>
<td>m³</td>
<td>45,6</td>
<td></td>
<td>NEPD 345-236, Martinsons</td>
</tr>
<tr>
<td>Mineralull, Stenull 120</td>
<td>m²</td>
<td>4,64</td>
<td></td>
<td>Paroc, NEPD-2392-1128-EN</td>
</tr>
<tr>
<td>Material</td>
<td>Deklarerad enhet</td>
<td>Klimatpåverkan [kg CO2-ekv/enhet]</td>
<td>Datareferens</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Skruv (gipsskiva), T57</td>
<td>kg</td>
<td>2,5</td>
<td>Steel Profiles and Accessories, EPD International SP – 00782, Gyproc, 2021.</td>
<td></td>
</tr>
</tbody>
</table>

**Ytterväggar**

<table>
<thead>
<tr>
<th>Material</th>
<th>Deklarerad enhet</th>
<th>Klimatpåverkan [kg CO2-ekv/enhet]</th>
<th>Datareferens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plåtfasad aluminium KALZIP 50/360 L10-CLIP</td>
<td>kg</td>
<td>6,7</td>
<td>Data från European Aluminium, 2019.</td>
</tr>
<tr>
<td>REDAir Multi TP T-Profil ALU</td>
<td>kg</td>
<td>6,7</td>
<td>Data från European Aluminium, 2019.</td>
</tr>
<tr>
<td>REDAir stålregel Multi MR 30 mm</td>
<td>kg</td>
<td>2,9</td>
<td>Wahlstrom, Karlstad Univ., 2019.</td>
</tr>
<tr>
<td>Stenull RW REDAir battens flex 200 mm</td>
<td>m²</td>
<td>7,51</td>
<td>NEPD 00131E rev1</td>
</tr>
<tr>
<td>KL-trä, 120 mm</td>
<td>m³</td>
<td>45,6</td>
<td>NEPD 345-236, Martinsons</td>
</tr>
<tr>
<td>Gipsskiva, 12,5 mm</td>
<td>m²</td>
<td>2,14</td>
<td>EPD Gyproc Typ F</td>
</tr>
<tr>
<td>Gipsskiva, 15,4 mm</td>
<td>m²</td>
<td>3,54</td>
<td>EPD Gyproc Typ F</td>
</tr>
<tr>
<td>Skruv (gipsskiva), T41</td>
<td>kg</td>
<td>2,5</td>
<td>Steel Profiles and Accessories, EPD International SP – 00782, Gyproc, 2021.</td>
</tr>
<tr>
<td>Skruv (gipsskiva), T29</td>
<td>kg</td>
<td>2,5</td>
<td>Steel Profiles and Accessories, EPD International SP – 00782, Gyproc, 2021.</td>
</tr>
</tbody>
</table>

**Takbjällkag**

<table>
<thead>
<tr>
<th>Material</th>
<th>Deklarerad enhet</th>
<th>Klimatpåverkan [kg CO2-ekv/enhet]</th>
<th>Datareferens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tätskikt YEP4000</td>
<td>m²</td>
<td>2,01</td>
<td>EPD Icopal Membran 3</td>
</tr>
<tr>
<td>Plywood, 14,5 mm</td>
<td>m³</td>
<td>192</td>
<td>Plywood EPD Moelven, 2020.</td>
</tr>
<tr>
<td>H350 Lättbalk</td>
<td>m³</td>
<td>1,83</td>
<td>I-beam, NEPD-3201-1842, Masonite beams, 2021</td>
</tr>
<tr>
<td>Mineralull, Stenull, 47 mm</td>
<td>m²</td>
<td>1,674</td>
<td>Paroc, NEPD-2392-1128-EN</td>
</tr>
<tr>
<td>Mineralull, Stenull, 256 mm</td>
<td>m²</td>
<td>9,424</td>
<td>Paroc, NEPD-2392-1128-EN</td>
</tr>
<tr>
<td>Plåt (stål), 9,5 mm</td>
<td>kg</td>
<td>2,6</td>
<td>Hot-dip galvanised steel building products EPD EcoPlatform nr.00001197, Plannja, 2020.</td>
</tr>
<tr>
<td>Gipsskiva Typ F, 15,4 mm</td>
<td>m²</td>
<td>3,54</td>
<td>EPD Gyproc Typ F</td>
</tr>
<tr>
<td>Primärprofil Gyproc P45, 45 mm</td>
<td>ton</td>
<td>2900</td>
<td>EPD Gyproc steel profiles</td>
</tr>
<tr>
<td>Sekundärprofil S25/85, 85 mm</td>
<td>ton</td>
<td>2900</td>
<td>EPD Gyproc steel profiles</td>
</tr>
<tr>
<td>Gipsskiva Hård Typ Habito, 12,5 mm</td>
<td>m²</td>
<td>2,26</td>
<td>EPD Gyproc Typ Habitat</td>
</tr>
</tbody>
</table>

**Balkong**

<table>
<thead>
<tr>
<th>Material</th>
<th>Deklarerad enhet</th>
<th>Klimatpåverkan [kg CO2-ekv/enhet]</th>
<th>Datareferens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trall</td>
<td>m³</td>
<td>29,6</td>
<td>EPD S-P-02657 Svenskt Trä</td>
</tr>
<tr>
<td>Regel, impregnerad</td>
<td>m³</td>
<td>29,6</td>
<td>EPD S-P-02657 Svenskt Trä</td>
</tr>
<tr>
<td>Tätskikt</td>
<td>m²</td>
<td>2,01</td>
<td>EPD S-P-02106 Icopal Membran 3</td>
</tr>
<tr>
<td>Foamglas T4</td>
<td>kg</td>
<td>1,49</td>
<td>Foamglas F, EPD-PEC-20200301-IBA1-EN, 2021</td>
</tr>
<tr>
<td>Limträbalk</td>
<td>m³</td>
<td>33</td>
<td>NEPD-2783-1438-NO Martinsons</td>
</tr>
<tr>
<td>KL-trä</td>
<td>m³</td>
<td>45,6</td>
<td>NEPD-345-236-NO Martinsons</td>
</tr>
</tbody>
</table>
Through our international collaboration programmes with academia, industry, and the public sector, we ensure the competitiveness of the Swedish business community on an international level and contribute to a sustainable society. Our 2,200 employees support and promote all manner of innovative processes, and our roughly 100 testbeds and demonstration facilities are instrumental in developing the future-proofing of products, technologies, and services. RISE Research Institutes of Sweden is fully owned by the Swedish state.

I internationell samverkan med akademi, näringsliv och offentlig sektor bidrar vi till ett konkurrenskraftigt näringsliv och ett hållbart samhälle. RISE 2 200 medarbetare driver och stöder alla typer av innovationsprocesser. Vi erbjuder ett 100-tal test- och demonstrationsmiljöer för framtidssäkra produkter, tekniker och tjänster. RISE Research Institutes of Sweden ägs av svenska staten.

RISE Research Institutes of Sweden AB
Laboratorgränd 2, 931 77, SKELLEFTEÅ
Telefon: 010-516 50 00
E-post: info@ri.se, Internet: www.ri.se

Träbyggande
RISE Rapport: 2022:60
ISBN: 978-91-89711-00-6