* * * * RISE in brief

- RISE is an independent, state-owned research institute.
- As an innovation partner, we help develop technologies, products, services and processes that contribute to a sustainable world and a competitive business community.
 - We do this in collaboration with and on behalf of companies, academia and the public sector.
 - > 2,800 employees across the country. Researchers, technicians, testers and other experts needed in working with tomorrow's innovations. 30 % with a PhD.

The Swedish Centre for Chemical Substitution, placed at RISE

Initiated and funded by the Swedish Government 2018, as part of reaching the environmental quality goal A non-toxic environment.

- Inspire and motivate
- Give tools and guidance
- Tell about alternatives and good examples

Substitution

- Remove the substance if its
 function is not needed
- If the function is needed:
 - Replace the hazardous substance with a less harmful one
 - Find an alternative solution to obtain the certain function; replace to another product, material, design, method or process

POPFREE

- Promotion of PFAS-free alternatives

Financing from Vinnova, the Swedish Innovations Agency,
More than 30 partners involved and engaged in PFAS phase-out
Alternatives assessment in 6 different product cases
Information and project report at www.popfree.se

Systemic change

Manufacturer of consumer products

Ex: Cosmetics, outdoor clothing, packaging, ski wax...

Pull from NGO, consumers, authorities...

PFAS-free

products

Product manufacturer

Ex: base formulations, paper, DWR treatments...

Push from the chemical industry and producers

Chemical/technical alternatives

Ex: new molecules, particles, ingredients...

Value chain

PFAS is used also in bike oils...

PTFE LUBE

PTFE formula and biodegradable does not seem right to fit on the same product...

PFAS, their concerns and PFAS-free alternatives

Lisa Skedung, Project Manager, POPFREE, RISE

Per-and polyFluoroAlkyl Substanses

At least one perfluorinated alkyl group $(-C_nF_{2n+1})$

Synthetic chemicals

Over 4730 substances

Fluoropolymers are PFAS

Per- and polyfluoroalkyl substances (PFASs)

https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/aboutpfass/

PFAS provide unique properties

Usage

- Food contact paper
- Outdoor/DWR textiles
- Protective clothing
- Impregnation
- Firefighting foam
- Ski wax
- Cosmetic products
- Electronics
- Brake fluid
- Lubricants

Why promote a phase-out?

- Persistent chemicals (degrade extremely slowly)
- Bioaccumulative and biomagnifying
- Mobile (available anywhere in the environment)
- Polluting soil and water
- Some bind to proteins
- High thermal stability

Spreading and exposure of PFAS

Health risks in humans

- Developmental effects (decrease in birth weight)
- Hepatic effects (e.g. increased levels of cholesterol and liver damage)
- Cardiovascular effects
- Endocrine effects (e.g. increased risk of thyroid disease)
- Immune effects (e.g. lower response to vaccines)
- Reproductive effects (decreased fertility)
- Proposed risk of testicular and kidney cancer

http://www.c8sciencepanel.org/ https://www.atsdr.cdc.gov/toxprofiles/tp200-c2.pdf

V. M. Vieira, K. Hoffman, H.-M. Shin, J. M. Weinberg, T. F. Webster, and T. Fletcher, "Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis," (in eng), Environmental health perspectives, vol. 121, no. 3, pp. 318-323, 2013.

Yet unregulated substances may also be of very high concern!

- Only a few PFAS substances have been studied thoroughly in terms of health risks.
- Only a few PFAS substances are regulated today.
- More restrictions will most probably come in the future.
 - A large number of substances makes a substance-by-substance evaluation impossible.
 - Most PFAS substances show similar properties of concern
 - Avoid regrettable substitution from one PFAS to another

POPFREE Ski Goes Global

Factsheet - PFAS in skiing

30 stakeholders in workshop

Roadmap

6 focus areas

Milestones

Activities

Four possible PFAS screening methods

Screening alternatives to PFAS

- 1. Determine PFAS function and define essential criteria for alternatives
- 2. Identify and screen potential alternatives in terms of technical performance (with identified relevant methods) and chemical risk assessment
- 3. Evaluate approved alternatives at pilot scale and/or using industrial standard
- 4. Qualitative Hot-spot or full Life Cycle Assessment for promising alternatives

