

Toolbox for Tribology - friction, wear and lubrication

Smooth running

Design the tribological system

Our unique competence set in surface chemistry enables us to characterize and design your tribological application to achieve the results you need.

Low friction catheters

Obtaining the right friction of catheters for smooth use. We design the lubricating coating.

Lubricating oils and seal materials

Screening of friction modifiers for applications such as motor oils. Evaluation of greases and bearing materials.

Tablets that do not crumble

How to optimize powder processing, including operations such as milling, powder flow, mixing, tableting, etc.

Perception of topical formulations

How to get great feeling moisturizers.

Food that feels pleasant

Why do some foods feel smooth and others don't

Development of oral care products

What is behind the astringent feeling after rinsing the mouth with an antibacterial mouthwash?

Paper packaging, faster production

How to reduce wear in paper machines and optimize printing.

Instruments	AFM Atomic Force Microscopy	MTM Mini Traction machine	Force Board	EHL Ultra Thin Film Mea- surement System	Amonton 2 ISO 15359	Peel Tester
Speciality	Combination with topography, conductivity, adhesion possible.	Versatility in choice of materials and measurement conditions.	A finger can be used as the probe surface.	Film thickness determination 1 to 1000 nm as a function of rolling speed.	Paper friction.Portable instrument.	
Type of materials	Sphere - flat geometry, Colloidal probes or AFM tip. Hair and other fibers.	Steel or PDMS ball. No limitations on disc material.	Flat, possible to attach to a flat plate of equipment.	Glass/steel Surface treated glass/ steel.	Flat thin/typically paper and plastics.	Bendable material (to be bent around the sled for attachment).
Contact area/ Geometries	Ø~2-50 μm (colloidal probe) Ø~10 nm (tip)	Diameter Ball 12.7/19.05 mm Disc 46 mm Steel barrel/disc	Depends on choice and size of material in contact	Steel Ball Ø =12.6 or 19 mm /disc	Flat/flat 60x60 mm	65x65 mm Flat-flat (bend at edges)
Contact pressure/ Force	0.5 nN - 1 μN	~0 to 3.1 GPa 0.1 to 75 N	Vertical: 0-40N Horizontal: 0-10N	0 to 50 N 0 to 3 GPa	7.7 N	0.1 – 108 N
Speed	10 nm/s - 10 μm/s	-4 to 4 m/s	3-500 mm/s	0- 4 m/s	20 mm/s	0.08 - 127 mm/s
Friction coefficient, conditions	Sliding	Slide to roll ratios: 0-100%	Mostly sliding	Rolling	Sliding	Sliding
Temperature	-15 to 180°C	-10 to 150 °C	Ambient	< 50 °C water based lubricant <150 °C oil lubricant	Air, RH 22°C and 55% RH.	Air, RH 22°C and 55% RH.
Test lubricant/ medium	Air, transparent liquids, RH10-80%	Air, liquids 10 to 35 ml	< 1 ml	120 ml	-	-

The lubricants can also be characterized with high shear rheology, dynamic wetting and chemical analysis. Wear characterizati on is done with SEM-EDX, white light profilometry or AFM.

RISE Research Institutes of Sweden

Division Bioeconomy and Health Telephone: +46 10 516 50 00 E-mail: info@ri.se, www.ri.se

+46 10 516 60 72 karin.persson@ri.se