

We look deeper

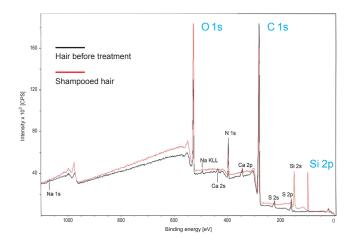
Damaged hair

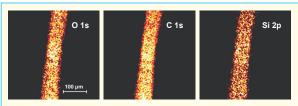
How do the ingredients in your product affect the quality and feel of the customer's hair?

Adhesion problems

How can we detect reasons for adhesional failure between surfaces, e.g. layers in a laminate, in order to improve the adhesion?

Too much medication


How is the active ingredient dispersed in your product and how does this affect the dosage?


Mold on the wall

How do the molecules in the paint move and how do we change the formula to make the paint weather-resistant?

Paper jam

How are the starch and pigment distributed on the cellulose fibers in the copying paper?

Study of a shampoo designed to leave silicone on the hair to make it feel softer.

The XPS images show the chemistry along the surface of a brown hair fiber after shampooing. The imaging of oxygen, carbon and silicon makes it possible to see how the formulation affects the surface of the hair fiber.

Techniques for Surface Analysis

	XPS/ESCA X-ray photoelectron spectroscopy. Also known as electron spectroscopy for chemical analysis	ToF-SIMS Time-of-flight secondary ion mass spectrometry	Raman spectroscopy	FT-IR-ATR & IRAS Fourier transform infrared spectroscopy – attenuated total reflection mode. Infrared reflectionabsorption spectroscopy	EDX Energy-dispersive X-ray analysis from scanning electron or environmental scanning electron microscopy (SEM or ESEM)
Analysis depth	2-10 nm	1-2 nm for static SIMS	0.5 µm	0.5-5 µm ATR, nm IRAS	0.5-5 µm
What chemical information does it give?	Elements Functional groups Oxidation states	Elements Molecules Functional groups Isotopes	Molecules Functional groups Crystallinity	Molecules Functional groups	Elements
Detection limit	0.1 atom %	ppm-ppb	1 %	1 % ATR	0.1-0.5 wt %
Quantification	Good	Moderate	Moderate	Moderate	Moderate
Lateral (x-y) resolution in imaging/mapping	<3 μm	0.2 µm	0.3 µm	1-2 µm	0.5 µm
What is the pressure during the measurement?	Ultrahigh vacuum	Ultrahigh vacuum	Atmospheric	Atmospheric	High vacuum in SEM; Atmospheric with regard to water vapour in ESEM
Radiation in → out	X-rays → Electrons	lons → lons	Photons → Photons	Photons → Photons	Electrons → X-rays
Confocal Raman	Raman spectroscopy + confocal microscopy allows for depth sectioning with a vertical resolution of about 0.5 µm				
AFM	Atomic force microscopy gives topography, viscoelastic properties, force mapping (adhesion, stiffness, etc.)				

