

Formulation of Biomacromolecules

- In your formulation

Formulation of Biomacromolecules

Our unique competence in colloid and surface science enables us to design smart and functional formulations for macromolecules like peptides, proteins and polymers.

Specific aims to

- Increase stability of actives
- Control and target the delivery of active substances
- Evaluate the compatibility with delivery systems and materials
- Formulate in functional delivery systems

Different approaches

Choice of excipients

Selection to increase performance

Carrier materials

Microparticles: Mesoporous Silica,

Hydrogels/Microgels

 $\textbf{Nanostructured materials:} \ \texttt{Lipid} \ \ \texttt{and}$

surfactant self-assembly

Dry formulation technologies

Spray-drying, Freeze-drying, Spray-freeze drying

Administration routes

Oral, intravenous, intramuscular, subcutaneous, topical, pulmonary, nasal, vaginal

Dosage forms

Solutions, emulsions, suspensions, foams, gels, semisolids, patches, powders, tablets

Characterization

Our advanced instrument park enables us to characterize the formulations in detail and to obtain information about the functionality of the system and interaction with other components.

	Key technologies	Information/Output
Processing Equipment	High shear mixers	Homogenous mixing
	Homogenizer, Microfluidizer	Monodispersity
Standard Characterization	Optical Microscopy	Morphology, Phase behaviour
	Rheology	Viscosity, rheological properties
	DLS (Dynamic Light Scattering)	Particle size, Particle size distribution
	Electrophoretic mobility	z-potential
	Pendant /Oscillating Drop method Turbiscan TAGS FTIR (Fourier Transform Infrared Spectroscopy) Fluorescent spectroscopy	Dynamic surface tension, Dilatational elasticity, Contact Angle
		Physical stability
		Conformation
	7	Hydrophobic intections
Advanced Characterization	Confocal Raman Microspectrscopy ESEM (Environmental scanning microscopy)	Distribution of components, penetration, diffusion
	Imaging mass spectrometri (TOF-SIMS)	Morphology
	XPS (X-ray Photoelectron Spectroscopy) AFM (Atomic Force Microscopy)	Distribution of components, chemical surface analysis,
		Chemical surface analysis
		Topography, adhesion, molecular forces, mechanical properties
Adsorption Techniques	Ellipsometry	Adsorbed amount, film thickness
	QCM-D (Quartz Crystal Microbalance)	Adsorbed amount, viscoelastic properties
	DPI (Dual Polarization Interferometry)	Adsorbed amount, film thickness
Perception	MTM (Mini Traction Machine)	Oral lubrication
	Force Board	Tactile properties