Finalisation of the European approach to assess the fire performance of facades

An introduction to the project financed by EC/DG Grow

Please, turn off your microphone!

Questions and comments can be sent to the following after the webinar:

lars.bostrom@ri.se
johan.anderson@ri.se
Aim and outcome of the project

• To finalize and fine-tune the assessment method developed at the previous stage as the “alternative method”

• A European approach to assess the fire performance of facades
Consortium

Project partners
- RISE, Sweden – project leader
- BAM, Germany
- Efectis, France
- EMI, Hungary
- University of Liege, Belgium

Subcontractors
- BRE, UK
- RISE Fire Research, Norway
- EGOLF
General content of the project

- Theoretical round robin
- Initial testing activities
- Experimental round robin
- Analysis and fine-tuning of the assessment method
Theoretical round robin

Objective: to carry out a theoretical round robin on the proposed assessment procedure in order to evaluate whether the descriptions on how to perform a test and the following classification given in the method needs to be further clarified.

- Led by University of Liege
- Invite all EGOLF members to participate – accredited laboratories
- Time schedule: March – October, 2020
Theoretical round robin

- Define the content of the round robin
- Invite EGOLF members and perform the exercise
- Analyse the response
- Rewrite the assessment method
- Report the results
Initial testing activities

Objective: to determine the sensitivity of the test method to variations of its main parameters and, consequently, define the specifications to be imposed on these parameters in order to ensure a robust method

- Led by BAM
- Time schedule: March, 2020 – January, 2021
Initial testing activities

- Literature survey
- Definition of the test program
- Design of a simple test rig
- Perform the tests
- Analyse the test results
- Update the assessment method
Initial testing activities - fuel

- Parametric tests on wood cribs
 - Wood species
 - Density
 - Geometrical tolerances
 - Moisture content

- Measurements
 - Mass loss rate
 - Heat release rate
 - Flame behaviour
 - Heat flux and temperature at different positions
Initial testing activities - average

The reference crib configurations selected in first phase will be installed in the combustion chamber of the test rig with an inert façade

- **Medium heat exposure**
 - Air flow rate: 400 m3/h
 - Wind speed: 0.5 m/s
 - Uplift: 0.5 m
 - Secondary opening: Eccentrically and at 1500 mm above the combustion chamber

- **Large heat exposure**
 - Air flow rate: Natural
 - Wind speed: 0.5 m/s
 - Uplift: 0.5 m
 - Secondary opening: Eccentrically and at 1500 mm above the combustion chamber
Initial testing activities - other

- Medium heat exposure
 - Air flow rate
 - 360 m3/h
 - 440 m3/h
 - Uplift of rig
 - 1.0 m
 - 2.0 m

- Large heat exposure
 - Wind speed
 - 1 m/s
 - 3 m/s
 - Uplift of rig
 - 1.0 m
 - 2.0 m
Initial testing activities - other

- **Secondary opening**
 - With eccentrically located opening/without opening on an inert façade
 - With symmetrically located opening/without opening on a laminate façade

- **Falling parts**
 - Examine different scanning techniques, i.e. image analysis techniques
 - Weight measurements
<table>
<thead>
<tr>
<th>Step</th>
<th>Test group</th>
<th>Type of test</th>
<th>Number</th>
<th>Location</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Crib parametric tests</td>
<td>8</td>
<td>Efectis</td>
<td>Indoor</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>Crib parametric tests</td>
<td>3</td>
<td>Efectis</td>
<td>Indoor</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Average test – large exposure</td>
<td>3</td>
<td>RISE</td>
<td>Indoor</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>Average test – medium exposure</td>
<td>3</td>
<td>BRE</td>
<td>Indoor</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>Parametric test air flow - medium exposure</td>
<td>2</td>
<td>BRE</td>
<td>Indoor</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>Parametric test uplift - medium exposure</td>
<td>2, 1 or 0</td>
<td>BRE</td>
<td>Indoor</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>Parametric test uplift - large exposure</td>
<td>2, 1 or 0</td>
<td>RISE</td>
<td>Indoor</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>Parametric test with 1 m/s - large exposure</td>
<td>1</td>
<td>RISE</td>
<td>Indoor</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>Parametric test with higher speed velocity - large exposure</td>
<td>1</td>
<td>Efectis</td>
<td>Outdoor</td>
</tr>
<tr>
<td>3</td>
<td>J</td>
<td>Secondary opening parametric test – large exposure</td>
<td>3</td>
<td>RISE</td>
<td>Indoor</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>Secondary opening parametric test – medium exposure</td>
<td>3</td>
<td>BRE</td>
<td>Indoor</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>Non fire test for measuring falling parts and burning debris</td>
<td>1</td>
<td>BAM</td>
<td>-</td>
</tr>
</tbody>
</table>
Experimental round robin

Objective: to quantify the within-lab and between-labs variability of the test results, i.e. the repeatability and the reproducibility of the proposed method

- Led by EMI
- Time schedule: October, 2020 – July, 2021
Experimental round robin

• Define the facade systems to be used
• Design of a suitable test rig
• Procure and deliver facade systems to the participants
• Perform the tests
• Analysis of the results
Experimental round robin

- Rainscreen and render
- ETICS
- Solid wood with ventilation gap
- Inert facade
Experimental round robin

<table>
<thead>
<tr>
<th>Number</th>
<th>Exposure</th>
<th>Location</th>
<th>Remark</th>
<th>*Cross with</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Large</td>
<td>BRE</td>
<td>Indoor</td>
<td>C-J</td>
</tr>
<tr>
<td>4</td>
<td>Medium</td>
<td>RISE</td>
<td>Indoor</td>
<td>D-K</td>
</tr>
<tr>
<td>4</td>
<td>Large</td>
<td>RISE FRN</td>
<td>Indoor</td>
<td>C-J</td>
</tr>
<tr>
<td>4</td>
<td>Medium</td>
<td>RISE FRN</td>
<td>Indoor</td>
<td>D-K</td>
</tr>
<tr>
<td>4</td>
<td>Large</td>
<td>EMI</td>
<td>Outdoor</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>Medium</td>
<td>Efectis</td>
<td>Outdoor</td>
<td>-</td>
</tr>
</tbody>
</table>

Some of these tests may be compared with tests performed in Task 2, i.e. the inert facade and the combustible facade used for the study of eccentricity of secondary opening. Therefore, the dispatching of the test will consider to use other labs than the ones who performed the Task 2 test in order to "maximize" the Round Robin effect.
Analysis

Objective: analyse results from the experimental program and the round robin, to provide a finetuned assessment method and classification scheme.

- Led by Efectis
- Time schedule: October, 2020 – January, 2022
Deliverables to EC

- Inception report: March 2020
- Progress report 1: August 2020
- Progress report 2: January 2021
- Progress report 3: October 2021
- Draft final report: December 2021
 - Validation workshop: January 2022
- Final report: February 2022
Communication plan to stakeholders and liaisons

- Information on theoretical round robin, October, 2020
- Information on initial testing, November, 2020
- Information on experimental round robin, June, 2021
- Information on analysis, September, 2021
- Information on final assessment method, November, 2021
Further work that may be needed

• Applicability of the method to facade systems not included in the project
• Direct and Extended Field of application
• Comparison with current national methods
• Measurements needed for Fire Safety Engineering
Lars Boström
E-mail: lars.bostrom@ri.se
Phone: +46 10 516 56 08
Mobile: +46 706 52 02 36