

Compartment fire design in Eurocode and advanced modeling

Joachim Schmid ETH Zurich

Contents

- 1. Evolution of Eurocode
- 2. Overview of Design Models
- 3. Consideration of Structural Timber
- 4. Application Examples
- 5. Conclusions

26.5.2021 | 1

1. Evolution of Eurocode – Fire Design

→Eurocode 1 - Actions on Structures: Part 1-2: Fire loads

2002-version lacks guidance about the fire load by "structural timber"

→Eurocode 5 - Timber structures: Part 1-2: Fire Design

2004-version lacks guidance about the fire load by "structural timber"

Evolution of EC

J. Schmid

1. Evolution of Eurocode – Fire Design of Timber Structures

[c N. Clark/INDEPENDENT]

J. Schmid

Evolution of EC

Structural fu

pplications

nclusions

26.5. 2021 | 3

1. Evolution of Eurocode – Fire Design of Timber Structures

1. Evolution of Eurocode – Fire Design

J. Schmid

Evolution of EC Des

Structural fue

1. Evolution of Eurocode – Fire Design of Timber Structures

J. Schmid

Structural fuel

Application

Conc

ETH zürich

1. Evolution of Eurocode – Fire Design of Timber Structures

Effective cross-section model (ECSM)

Step 0: Definition of the design fire

1 s

Step 1:

Reduction of the initial cross-section \rightarrow <u>residual</u> cross-section

2 Step 2:

Reduction of the residual cross-section

 \rightarrow <u>effective</u> cross-section

Structural fuel

Conclusions

2. Overview of design models

J. Schmid

... from "a temperature" to fluid dynamics models in fire

Applicability of "standard-fire furnace testing" for timber products

- Is it acceptable to test timber components in furnaces?
 - \rightarrow Limitation of results to fully developed phase;
 - \rightarrow no decay/burnout assessment can be done
- Do timber members receive a different thermal exposure in furnaces?
 - \rightarrow No difference for combustible and non-combustible products
 - →reduced burner fuel by lower thermal inertia AND topped up by "structural fuel" (50 to 100kW/m²)

ETH zürich

Applicability of "parametric fire design" for timber products

- Is it Annex B (2002) applicable for exposed timber surfaces (e.g. by CLT panels)?

Behaviour of timber members in "natural fires"

- How much of a timber member will **contribute** to the fire dynamics in a compartment fire?
- Will **burnout** occur?

J. Schmid

ETH zürich

el 📔 A

pplications

ons 26.

26.5. 2021 | 11

Behaviour of timber members in "natural fires"

- Experiments are costly (time, money) and difficult to control.
- The design need is 20x larger...

of EC | Desig

Conclusio

ETH zürich

Behaviour of timber members in "natural fires"

- How much of a timber member will contribute to the fire dynamics in a compartment fire?
- First quantification of "combustion behaviour" of structural timber by Hakkarainen [2000]:

Hakkarainen observed that the measured, *total HRR* is only ~50% of the expected level estimated by charring.

ETH zürich

Charring rate

Behaviour of timber members in "natural fires"

- How much of a timber member will **contribute** to the fire dynamics in a compartment fire?
- Comprehensive experimental series by NIST and RISE:

Brandon could calculate a "fitting factor" to align the measured, total HRR with the predicted value by a charring rate:

 $q_{st} = \alpha_1 \cdot \alpha_2 \cdot \beta_{st}$

Energy release from cone-calorimetry

Structural timber

Structural fuel

ETH zürich

3. Consideration of Structural Timber – combustion behaviour

(

Mass loss:

- Measure of material conversion
- Measure of the combustion of the char layer

Variable energy storage and release factor

Structural fuel

Framework: Timber Charring and Heat Storage (TiCHS) – Model [Further reading: Open Engineering] **Process:**

- Calculation of the energy balance structure-compartment-exterior \rightarrow zone-model + TiCHS-model
- Novelty: Calculation of the "sum" of the movable fire load and the structural fire load
- Calculation of the energy release α_{st}

ETH zürich

2.0 _

ETH zürich

4. Application

Comparison of Models: Parametric fire:2004

J. Schmid

Applications

C

26.5. 2021 | 18

4. Application

real fire

(Simulation

7m x 7m

5. Conclusions

- Eurocode 5-1-2:2004 models DO NOT consider a fire load by structural timber; no burnout can estimated;
- Fire dynamics in structural timber compartments is a complex area;
 difficult to cover in standardisation in detail → area for specialists
- **Sub-models** to be checked for "conservativeness" for structural timber;
- **Data Acquisition** and documentation;
- **Eurocode 5-1-2** development will proceed until 2025;

More details about Fire Dynamics, Data Acquisition and Robustness in fire will be presented at WCTE.

26.5.2021 | 20

J. Schmid

Evolution of EC

Design Models

Structural fue

Applicatio

Conclusions

Acknowledgements

SWISS NATIONAL SCIENCE FOUNDATION

Institute of Structural Engineering

J. Schmid

lution of EC

Structural fue

Application

Conclusio